Self-Similar Solutions for the Triple Point Paradox in Gasdynamics
نویسندگان
چکیده
We present numerical solutions of a two-dimensional Riemann problem for the compressible Euler equations that describes the Mach reflection of weak shock waves. High resolution finite volume schemes are used to solve the equations formulated in self-similar variables. We use extreme local grid refinement to resolve the solution in the neighborhood of an apparent but mathematically inadmissible shock triple point. The solutions contain a complex structure: instead of three shocks meeting in a single standard triple point, there is a sequence of triple points and tiny supersonic patches behind the leading triple point, formed by the reflection of weak shocks and expansion waves between the sonic line and the Mach shock. An expansion fan originates at each triple point, resolving the von Neumann triple point paradox.
منابع مشابه
The Triple Point Paradox for the Nonlinear Wave System
We present numerical solutions of a two-dimensional Riemann problem for the nonlinear wave system which is used to describe the Mach reflection of weak shock waves. Robust low order as well as high resolution finite volume schemes are employed to solve this equation formulated in self-similar variables. These, together with extreme local grid refinement, are used to resolve the solution in the ...
متن کاملConstraints on Possible Singularities for the Unsteady Transonic Small Disturbance (UTSD) Equations
We discuss the singular behavior of solutions to two-dimensional, general secondorder, uniformly elliptic equations in divergence form, with bounded measurable coefficients and discontinuous Dirichlet data along a portion of a Lipschitz boundary. We show that the conjugate to the solution develops a singularity that is at least logarithmic along the boundary at the points of discontinuity in th...
متن کاملSelf-Similar Solutions for Weak Shock Reflection
We present numerical solutions of a two-dimensional Riemann problem for the unsteady transonic small disturbance equations that provides an asymptotic description of the Mach reflection of weak shock waves. We develop a new numerical scheme to solve the equations in selfsimilar coordinates and use local grid refinement to resolve the solution in the reflection region. The solutions contain a re...
متن کاملFurther Results on Guderley Mach Reflection and the Triple Point Paradox
Recent numerical solutions and shock tube experiments have shown the existence of a complex reflection pattern, known as Guderley Mach reflection, which provides a resolution of the von Neumann paradox of weak shock reflection. In this pattern, there is a sequence of tiny supersonic patches, reflected shocks and expansion waves behind the triple point, with a discontinuous transition from super...
متن کاملTriple positive solutions of $m$-point boundary value problem on time scales with $p$-Laplacian
In this paper, we consider the multipoint boundary value problem for one-dimensional $p$-Laplacian dynamic equation on time scales. We prove the existence at least three positive solutions of the boundary value problem by using the Avery and Peterson fixed point theorem. The interesting point is that the non-linear term $f$ involves a first-order derivative explicitly. Our results ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal of Applied Mathematics
دوره 68 شماره
صفحات -
تاریخ انتشار 2008